Simulator
This exercise uses raid.py
, a simple RAID simulator you can use to shore up your knowledge of how RAID systems work. See the previous lesson for details on the simulator.
#! /usr/bin/env python import math import random from optparse import OptionParser # minimum unit of transfer to RAID BLOCKSIZE = 4096 def convert(size): length = len(size) lastchar = size[length-1] if (lastchar == 'k') or (lastchar == 'K'): m = 1024 nsize = int(size[0:length-1]) * m elif (lastchar == 'm') or (lastchar == 'M'): m = 1024*1024 nsize = int(size[0:length-1]) * m elif (lastchar == 'g') or (lastchar == 'G'): m = 1024*1024*1024 nsize = int(size[0:length-1]) * m else: nsize = int(size) return nsize class disk: def __init__(self, seekTime=10, xferTime=0.1, queueLen=8): # these are both in milliseconds # seek is the time to seek (simple constant amount) # transfer is the time to read one block self.seekTime = seekTime self.xferTime = xferTime # length of scheduling queue self.queueLen = queueLen # current location: make it negative so that whatever # the first read is, it causes a seek self.currAddr = -10000 # queue self.queue = [] # disk geometry self.numTracks = 100 self.blocksPerTrack = 100 self.blocksPerDisk = self.numTracks * self.blocksPerTrack # stats self.countIO = 0 self.countSeq = 0 self.countNseq = 0 self.countRand = 0 self.utilTime = 0 def stats(self): return (self.countIO, self.countSeq, self.countNseq, self.countRand, self.utilTime) def enqueue(self, addr): assert(addr < self.blocksPerDisk) self.countIO += 1 # check if this is on the same track, or a different one currTrack = self.currAddr / self.numTracks newTrack = addr / self.numTracks # absolute diff diff = addr - self.currAddr if diff < 0: diff = -diff # if on the same track... if currTrack == newTrack or diff < self.blocksPerTrack: if diff == 1: self.countSeq += 1 else: self.countNseq += 1 self.utilTime += (diff * self.xferTime) else: self.countRand += 1 self.utilTime += (self.seekTime + self.xferTime) self.currAddr = addr def go(self): return self.utilTime class raid: def __init__(self, chunkSize='4k', numDisks=4, level=0, timing=False, reverse=False, solve=False, raid5type='LS'): chunkSize = int(convert(chunkSize)) self.chunkSize = chunkSize / BLOCKSIZE self.numDisks = numDisks self.raidLevel = level self.timing = timing self.reverse = reverse self.solve = solve self.raid5type = raid5type if (chunkSize % BLOCKSIZE) != 0: print 'chunksize (%d) must be multiple of blocksize (%d): %d' % (chunkSize, BLOCKSIZE, self.chunkSize % BLOCKSIZE) exit(1) if self.raidLevel == 1 and numDisks % 2 != 0: print 'raid1: disks (%d) must be a multiple of two' % numDisks exit(1) if self.raidLevel == 4: self.blocksInStripe = (self.numDisks - 1) * self.chunkSize self.pdisk = self.numDisks - 1 if self.raidLevel == 5: self.blocksInStripe = (self.numDisks - 1) * self.chunkSize self.pdisk = -1 self.disks = [] for i in range(self.numDisks): self.disks.append(disk()) # print per-disk stats def stats(self, totalTime): for d in range(self.numDisks): s = self.disks[d].stats() if totalTime > 0.0: util = (100.0*float(s[4])/totalTime) else: util = 0.0 if s[4] == totalTime: print 'disk:%d busy: %.2f I/Os: %5d (sequential:%d nearly:%d random:%d)' % (d, util, s[0], s[1], s[2], s[3]) elif s[4] == 0: print 'disk:%d busy: %.2f I/Os: %5d (sequential:%d nearly:%d random:%d)' % (d, util, s[0], s[1], s[2], s[3]) else: print 'disk:%d busy: %.2f I/Os: %5d (sequential:%d nearly:%d random:%d)' % (d, util, s[0], s[1], s[2], s[3]) # global enqueue function def enqueue(self, addr, size, isWrite): # should we print out the logical operation? if self.timing == False: if self.solve or self.reverse==False: if isWrite: print 'LOGICAL WRITE to addr:%d size:%d' % (addr, size * BLOCKSIZE) else: print 'LOGICAL READ from addr:%d size:%d' % (addr, size * BLOCKSIZE) if self.solve == False: print ' Physical reads/writes?\n' else: print 'LOGICAL OPERATION is ?' # should we print out the physical operations? if self.timing == False and (self.solve or self.reverse==True): self.printPhysical = True else: self.printPhysical = False if self.raidLevel == 0: self.enqueue0(addr, size, isWrite) elif self.raidLevel == 1: self.enqueue1(addr, size, isWrite) elif self.raidLevel == 4 or self.raidLevel == 5: self.enqueue45(addr, size, isWrite) # process disk workloads one at a time, returning final completion time def go(self): tmax = 0 for d in range(self.numDisks): t = self.disks[d].go() if t > tmax: tmax = t return tmax # helper functions def doSingleRead(self, disk, off, doNewline=False): if self.printPhysical: print ' read [disk %d, offset %d] ' % (disk, off), if doNewline: print '' self.disks[disk].enqueue(off) def doSingleWrite(self, disk, off, doNewline=False): if self.printPhysical: print ' write [disk %d, offset %d] ' % (disk, off), if doNewline: print '' self.disks[disk].enqueue(off) # # mapping for RAID 0 (striping) # def bmap0(self, bnum): cnum = bnum / self.chunkSize coff = bnum % self.chunkSize return (cnum % self.numDisks, (cnum / self.numDisks) * self.chunkSize + coff) def enqueue0(self, addr, size, isWrite): # can ignore isWrite, as I/O pattern is the same for striping for b in range(addr, addr+size): (disk, off) = self.bmap0(b) if isWrite: self.doSingleWrite(disk, off, True) else: self.doSingleRead(disk, off, True) if self.timing == False and self.printPhysical: print '' # # mapping for RAID 1 (mirroring) # def bmap1(self, bnum): cnum = bnum / self.chunkSize coff = bnum % self.chunkSize disk = 2 * (cnum % (self.numDisks / 2)) return (disk, disk + 1, (cnum / (self.numDisks / 2)) * self.chunkSize + coff) def enqueue1(self, addr, size, isWrite): for b in range(addr, addr+size): (disk1, disk2, off) = self.bmap1(b) # print 'enqueue:', addr, size, '-->', m if isWrite: self.doSingleWrite(disk1, off, False) self.doSingleWrite(disk2, off, True) else: # the raid-1 read balancing algorithm is here; # could be something more intelligent -- # instead, it is just based on the disk offset # to produce something easily reproducible if off % 2 == 0: self.doSingleRead(disk1, off, True) else: self.doSingleRead(disk2, off, True) if self.timing == False and self.printPhysical: print '' # # mapping for RAID 4 (parity disk) # # assumes (for now) that there is just one parity disk # def bmap4(self, bnum): cnum = bnum / self.chunkSize coff = bnum % self.chunkSize return (cnum % (self.numDisks - 1), (cnum / (self.numDisks - 1)) * self.chunkSize + coff) def pmap4(self, snum): return self.pdisk # # mapping for RAID 5 (rotated parity) # def __bmap5(self, bnum): cnum = bnum / self.chunkSize coff = bnum % self.chunkSize ddsk = cnum / (self.numDisks - 1) doff = (ddsk * self.chunkSize) + coff disk = cnum % (self.numDisks - 1) col = (ddsk % self.numDisks) pdisk = (self.numDisks - 1) - col # supports left-asymmetric and left-symmetric layouts if self.raid5type == 'LA': if disk >= pdisk: disk += 1 elif self.raid5type == 'LS': disk = (disk - col) % (self.numDisks) else: print 'error: no such RAID scheme' exit(1) assert(disk != pdisk) return (disk, pdisk, doff) # yes this is lame (redundant call to __bmap5 is serious programmer laziness) def bmap5(self, bnum): (disk, pdisk, off) = self.__bmap5(bnum) return (disk, off) # this too is lame (redundant call to __bmap5 is serious programmer laziness) def pmap5(self, snum): (disk, pdisk, off) = self.__bmap5(snum * self.blocksInStripe) return pdisk # RAID 4/5 helper routine to write out some blocks in a stripe def doPartialWrite(self, stripe, begin, end, bmap, pmap): numWrites = end - begin pdisk = pmap(stripe) if (numWrites + 1) <= (self.blocksInStripe - numWrites): # SUBTRACTIVE PARITY # print 'SUBTRACTIVE' offList = [] for voff in range(begin, end): (disk, off) = bmap(voff) self.doSingleRead(disk, off) if off not in offList: offList.append(off) for i in range(len(offList)): self.doSingleRead(pdisk, offList[i], i == (len(offList) - 1)) else: # ADDITIVE PARITY # print 'ADDITIVE' stripeBegin = stripe * self.blocksInStripe stripeEnd = stripeBegin + self.blocksInStripe for voff in range(stripeBegin, begin): (disk, off) = bmap(voff) self.doSingleRead(disk, off, (voff == (begin - 1)) and (end == stripeEnd)) for voff in range(end, stripeEnd): (disk, off) = bmap(voff) self.doSingleRead(disk, off, voff == (stripeEnd - 1)) # WRITES: same for additive or subtractive parity offList = [] for voff in range(begin, end): (disk, off) = bmap(voff) self.doSingleWrite(disk, off) if off not in offList: offList.append(off) for i in range(len(offList)): self.doSingleWrite(pdisk, offList[i], i == (len(offList) - 1)) # RAID 4/5 enqueue routine def enqueue45(self, addr, size, isWrite): if self.raidLevel == 4: (bmap, pmap) = (self.bmap4, self.pmap4) elif self.raidLevel == 5: (bmap, pmap) = (self.bmap5, self.pmap5) if isWrite == False: for b in range(addr, addr+size): (disk, off) = bmap(b) self.doSingleRead(disk, off) else: # process the write request, one stripe at a time initStripe = (addr) / self.blocksInStripe finalStripe = (addr + size - 1) / self.blocksInStripe left = size begin = addr for stripe in range(initStripe, finalStripe + 1): endOfStripe = (stripe * self.blocksInStripe) + self.blocksInStripe if left >= self.blocksInStripe: end = begin + self.blocksInStripe else: end = begin + left if end >= endOfStripe: end = endOfStripe self.doPartialWrite(stripe, begin, end, bmap, pmap) left -= (end - begin) begin = end # for all cases, print this for pretty-ness in mapping mode if self.timing == False and self.printPhysical: print '' # # main program # parser = OptionParser() parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed') parser.add_option('-D', '--numDisks', default=4, help='number of disks in RAID', action='store', type='int', dest='numDisks') parser.add_option('-C', '--chunkSize', default='4k', help='chunk size of the RAID', action='store', type='string', dest='chunkSize') parser.add_option('-n', '--numRequests', default=10, help='number of requests to simulate', action='store', type='int', dest='numRequests') parser.add_option('-S', '--reqSize', default='4k', help='size of requests', action='store', type='string', dest='size') parser.add_option('-W', '--workload', default='rand', help='either "rand" or "seq" workloads', action='store', type='string', dest='workload') parser.add_option('-w', '--writeFrac', default=0, help='write fraction (100->all writes, 0->all reads)', action='store', type='int', dest='writeFrac') parser.add_option('-R', '--randRange', default=10000, help='range of requests (when using "rand" workload)', action='store', type='int', dest='range') parser.add_option('-L', '--level', default=0, help='RAID level (0, 1, 4, 5)', action='store', type='int', dest='level') parser.add_option('-5', '--raid5', default='LS', help='RAID-5 left-symmetric "LS" or left-asym "LA"', action='store', type='string', dest='raid5type') parser.add_option('-r', '--reverse', default=False, help='instead of showing logical ops, show physical', action='store_true', dest='reverse') parser.add_option('-t', '--timing', default=False, help='use timing mode, instead of mapping mode', action='store_true', dest='timing') parser.add_option('-c', '--compute', default=False, help='compute answers for me', action='store_true', dest='solve') (options, args) = parser.parse_args() print 'ARG blockSize', BLOCKSIZE print 'ARG seed', options.seed print 'ARG numDisks', options.numDisks print 'ARG chunkSize', options.chunkSize print 'ARG numRequests', options.numRequests print 'ARG reqSize', options.size print 'ARG workload', options.workload print 'ARG writeFrac', options.writeFrac print 'ARG randRange', options.range print 'ARG level', options.level print 'ARG raid5', options.raid5type print 'ARG reverse', options.reverse print 'ARG timing', options.timing print '' writeFrac = float(options.writeFrac) / 100.0 assert(writeFrac >= 0.0 and writeFrac <= 1.0) random.seed(options.seed) size = convert(options.size) if size % BLOCKSIZE != 0: print 'error: request size (%d) must be a multiple of BLOCKSIZE (%d)' % (size, BLOCKSIZE) exit(1) size = size / BLOCKSIZE if options.workload == 'seq' or options.workload == 's' or options.workload == 'sequential': workloadIsSequential = True elif options.workload == 'rand' or options.workload == 'r' or options.workload == 'random': workloadIsSequential = False else: print 'error: workload must be either r/rand/random or s/seq/sequential' exit(1) assert(options.level == 0 or options.level == 1 or options.level == 4 or options.level == 5) if options.level != 0 and options.numDisks < 2: print 'RAID-4 and RAID-5 need more than 1 disk' exit(1) if options.level == 5 and options.raid5type != 'LA' and options.raid5type != 'LS': print 'Only two types of RAID-5 supported: left-asymmetric (LA) and left-symmetric (LS) (%s is not)' % options.raid5type exit(1) # instantiate RAID r = raid(chunkSize=options.chunkSize, numDisks=options.numDisks, level=options.level, timing=options.timing, reverse=options.reverse, solve=options.solve, raid5type=options.raid5type) # generate requests off = 0 for i in range(options.numRequests): if workloadIsSequential == True: blk = off off += size else: blk = int(random.random() * options.range) if random.random() < writeFrac: r.enqueue(blk, size, True) else: r.enqueue(blk, size, False) # process requests t = r.go() # print out some final info, if needed if options.timing == False: print '' exit(0) if options.solve: print '' r.stats(t) print '' print 'STAT totalTime', t print '' else: print '' print 'Estimate how long the workload should take to complete.' print '- Roughly how many requests should each disk receive?' print '- How many requests are random, how many sequential?' print ''
Questions
-
Use the simulator to perform some basic RAID mapping tests. Run with different levels (0, 1, 4, 5) and see if you can figure out the mappings of a set of requests. For RAID-5, see if you can figure out the difference between left-symmetric and left-asymmetric layouts. Use some different random seeds to generate different problems than above.
-
Do the same as the first problem, but this time vary the chunk size with
-C
. How does chunk size change the mappings? -
Do the same as above, but use the
-r
flag to reverse the nature of each problem. -
Now use the reverse flag but increase the size of each request with the
-S
flag. Try specifying sizes of 8k, 12k, and 16k, while varying the RAID level. What happens to the underlying I/O pattern when the size of the request increases? Make sure to try this with the sequential workload too (-W sequential
); for what request sizes are RAID-4 and RAID-5 much more I/O efficient? -
Use the timing mode of the simulator (
-t
) to estimate the performance of 100 random reads to the RAID, while varying the RAID levels, using 4 disks. -
Do the same as above, but increase the number of disks. How does the performance of each RAID level scale as the number of disks increases?
-
Do the same as above, but use all writes (
-w 100
) instead of reads. How does the performance of each RAID level scale now? Can you do a rough estimate of the time it will take to complete the workload of 100 random writes? -
Run the timing mode one last time, but this time with a sequential workload (
-W sequential
). How does the performance vary with RAID level, and when doing reads versus writes? How about when varying the size of each request? What size should you write to a RAID when using RAID-4 or RAID-5?
Get hands-on with 1400+ tech skills courses.